例題III 実在建物（Aビル）の計算
（BEST 専門版 Ver.1307 準拠）

一 設備計算編一
例題Ⅲ 実在建物（Aビル）の計算

<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>頁码</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>計算の概要</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>建物の入力（建築単独計算）</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>建物のモデル化</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>最大熱負荷計算</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>年間熱負荷計算</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>空調・建築の連成計算</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>空調設備のデータ設定</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>熱源設備のデータ設定</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>換気設備のデータ設定</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>建築・空調連成計算の結果</td>
<td>28</td>
</tr>
<tr>
<td>4.</td>
<td>衛生・建築の連成計算</td>
<td>29</td>
</tr>
<tr>
<td>5.</td>
<td>電気・建築の連成計算</td>
<td>33</td>
</tr>
<tr>
<td>6.</td>
<td>建物全体の連成計算の結果</td>
<td>35</td>
</tr>
</tbody>
</table>
中央熱源方式のオフィスビル（Aビル）
1. 計算の概要

例題Ⅲでは、実在するオフィスビルの計算例として、中央熱源方式のAビルの入力を行っていきます。表1-1にAビルの建物概要と図1-1に断面図と基準階平面図を示します。実在建物の計算を行う場合、建物形状やシステムを忠実に再現して入力することは、ほぼ不可能といえます。そこで、実在建物の入力に際してはモデル化という作業が必要となります。

表 1-1 Aビルの建物概要

<table>
<thead>
<tr>
<th>建物概要</th>
<th>建物名称</th>
<th>Aビル</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>建設地</td>
<td>東京都</td>
</tr>
<tr>
<td></td>
<td>建物用途</td>
<td>事務所</td>
</tr>
<tr>
<td></td>
<td>建築面積</td>
<td>1,497.75㎡</td>
</tr>
<tr>
<td></td>
<td>地上延床面積</td>
<td>20,580.88㎡</td>
</tr>
<tr>
<td></td>
<td>階数</td>
<td>地上14階、地下1階</td>
</tr>
<tr>
<td></td>
<td>構造</td>
<td>S造、一部SRC造、RC造</td>
</tr>
<tr>
<td></td>
<td>吸収式冷温水発生機(ベース機)</td>
<td>×1台</td>
</tr>
<tr>
<td></td>
<td>冷却能力: 1407kW、加熱能力1178kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>電動空冷HPチラー ×1台</td>
<td></td>
</tr>
<tr>
<td></td>
<td>冷却能力: 935kW、加熱能力990kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>各階空調機+VAVユニット方式</td>
<td></td>
</tr>
<tr>
<td></td>
<td>インテリア系統(AHU1) ×1台/階</td>
<td></td>
</tr>
<tr>
<td></td>
<td>東ペリメータ系統(AHU2) ×1台/階</td>
<td></td>
</tr>
<tr>
<td></td>
<td>西ペリメータ系統(AHU3) ×1台/階</td>
<td></td>
</tr>
<tr>
<td></td>
<td>基準階 便所EAファン 1000㎥/h ×1台/階</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EV機械室SA・EAファン 1500㎥/h ×各1台</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱源機械室SA・EAファン 5000㎥/h ×各1台</td>
<td></td>
</tr>
<tr>
<td></td>
<td>駐車場EAファン 18,000㎥/h ×1台</td>
<td></td>
</tr>
<tr>
<td></td>
<td>上水・雑用水の2系統給水、圧力給水方式</td>
<td></td>
</tr>
<tr>
<td></td>
<td>電気室SA・EAファン 5000㎥/h ×各1台</td>
<td></td>
</tr>
<tr>
<td></td>
<td>凍結防止EAセット 18,000㎥/h ×1台</td>
<td></td>
</tr>
<tr>
<td></td>
<td>上水・雑用水の2系統給水、圧力給水方式</td>
<td></td>
</tr>
<tr>
<td></td>
<td>電気・コンセント供給設備 80VA/㎡ (照明容量30VA/㎡、コンセント容量50VA/㎡)</td>
<td></td>
</tr>
</tbody>
</table>

図 1-1 Aビルの断面図（左）と基準階平面図（右）
2. 建物の入力（建築単独計算）

ここでは、Aビルの建物側の入力について説明します。このAビルの建物側の入力であれば、全部で1日もあれば十分なはずです。入力作業以前に、入力条件を考えるのに多少の慣れが必要かと思いますが、この後に出てくる入力条件の表のようなものを自分であらかじめ用意しておけば、入力作業自体はスムーズにいくはずです。ちなみに、このAビルの入力作業自体は、約50分で完了しました。半日ほどかけて事前にきちんと入力データの準備（段取り）を行っておくことがポイントと言えます。また、最初はあまり考え込まずにデフォルト値を利用して、一通り計算結果が出ることを確認してから、細かな入力値の修正を行っていくのも一つのコツです。

2.1 建物のモデル化

これまでの例題と同様に、建物全体のエネルギー消費量を求める場合、建築とシステム（空調、電気、衛生など）のデータをいったんに入力するのではなく、まずは建築データを入力します。その後、建築単独計算（従来の熱負荷計算）を行い、その結果を調べて建築に入力データに問題のないことを確認してから、順次システム側の入力を行っていきます。ここでは、最初の建物入力データ作成にあたり、建物のモデル化について説明していきます。

建物のモデル化にあたり、まずは大きな方針をたてます。Aビルは図1-1、図1-1にあるように、14階建、延床面積20,000㎡程の比較的大きなオフィスビルで、窓窓部では外ブラインドと発熱ガラスを組み合わせた最新式の外皮システムなどが採用されています。そこで以下のようなモデル化の大方針をたてます。

a. 建物側の入力は基準階のみとし最上階は計算しない（階数があるので最上階は重要でないと判断）
b. ゾーニングは、ペリメータ2ゾーン（東、西）とインテリアゾーン1ゾーンと単純化する
c. 南側のコア部は計算対象ゾーンに含めず、隣室温度差係数で考慮する
d. 外ブラインド+発熱ガラスは入力できないため、エアフローウィンドウで置き換える

これらの方針でモデル化した建物を図2.1-1に示します。aについては、建物側では基準階のみで負荷計算を行い、後にシステム側で階数分を掛けるといった入力と同じです。bのゾーニングは、東西の窓面を有する部分をそれぞれペリメータとした残りは全てインテリアとして単純化しました。cについては、南側のコア部分を実際に入力して計算するのではなく、コア部分を非空調室とみなして、隣室温度差係数（=0.3）を考慮して計算することにします。例えば外気温35℃、自室温26℃とすると、

隣室温 = 0.3×35+(1−0.3)×26 = 28.7℃
その他に、モデル化に際して工夫した入力項目について列記します。

◆床面地上高について
基準階の床面高さとして、中央階にあたる7階を基準階の床面地上高（=24m）とします。

◆梁（H鋼）の入力について
Aビルでは、天井ボードの無い直天仕上げとなっているため、居室に梁（H鋼）が露出しています。この影響を考慮するために、梁を家具類と同様に考えて入力します。家具類の計算では、熱的な遅れを実験値と理論値から逆算して求めています。すなわち、空気と同様の扱いの計算ではありません。例題IIでも同様に梁の影響を考慮しましたが、この時の梁は矩形のRC梁のため、外壁や内壁に含めて換算する方法で入力していました。今回Aビルの梁はH鋼となっているため、断面が矩形でなくH形であるため断面積を求めるのが面倒なので、RCの床と鋼の梁では材質が違うため、外壁や内壁に含めて換算する方法ではなく、家具類とみなして入力する方法をとりました。梁を家具類に置き換える考え方は以下のとおりです。

① 全ての梁の重量を求めます。
図1.2.1-2の梁伏図より梁の寸法、本数などから拾っています。
大梁の重量： 240[kg/m]×17.6[m]×9[本] = 38,016.0[kg]
中梁の重量： 103[kg/m]×6.4[m]×16[本] = 10,547.2[kg]
小梁の重量： 36.7[kg/m]×6.4[m]×56[本] = 13,153.3[kg]
梁の合計重量 = 61,716.5[kg]

② 全ての梁の熱容量を求めます。
H鋼の比熱を461[J/(kg・K)]とすると、
梁の合計熱容量 = 61,716.5[kg]×461[J/(kg・K)] = 28,451,306.5[J/K]
となります。

③ 家具の熱容量の入力に合わせて、室容積で割った値を求めます。
室容積： 17.6[m]×51.2[m]×4[m] = 3,604.48[m³] = 3,604,480[lit]
単位容積あたりの梁の合計熱容量は、
となり、これで梁を家具類とみなした熱容量が求めました。
2.2 最大熱負荷計算

（1） 最大熱負荷計算の設定

いきなり入力を始めるのではなく、事前に必要な入力データを用意します。表2.2-1〜表2.2-6にAビルの入力データの一覧、図2.2-1に内部発熱スケジュールを示します。

表2.2-1 最大負荷計算用の共通条件

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>建物名称</td>
<td></td>
<td>建物名称:例題Ⅲ 実在建物_Aビル、検討名称:最大・年間負荷 作成者氏名:空欄</td>
</tr>
<tr>
<td>気象</td>
<td></td>
<td>気象データのタイプ:設計用データ 気象データ名称:拡張アメダス60分値 地点:関東ー東京ー東京（地点番号:363）設計気象タイプ:暖房2タイプ+冷房3タイプ</td>
</tr>
<tr>
<td>計算範囲</td>
<td></td>
<td>計算タイプ:最大負荷計算・月代表日計算、助走計算日数:20日、最小計算時間間隔:5分</td>
</tr>
<tr>
<td>特別休日</td>
<td></td>
<td>季節係数:3/31まで0.3、5/31まで1.0、9/30まで1.1、11/30まで1.0、12/31まで0.3</td>
</tr>
<tr>
<td>空調</td>
<td></td>
<td>建築計算時間間隔:年間スケジュール名:空欄、年間スケジュールモード名:空欄 週間スケジュール名:就業日、変動タイプ:②階段状スケジュール:平日...8:00まで0（非空調）、22:00まで1（空調）、24:00まで0休日、その他...24:00まで0</td>
</tr>
<tr>
<td>点灯率</td>
<td></td>
<td>年間スケジュール名:空欄、年間スケジュールモード名:空欄 週間スケジュール名:就業日、変動タイプ:①折線状スケジュール:（デフォルト値を使用）平日...0:00に0、24:00に0</td>
</tr>
<tr>
<td>機器使用率</td>
<td></td>
<td>年間スケジュール名:空欄、年間スケジュールモード名:空欄 週間スケジュール名:就業日、変動タイプ:①折線状スケジュール:（デフォルト値を使用）平日...0:00に0、24:00に0</td>
</tr>
<tr>
<td>在室率</td>
<td></td>
<td>年間スケジュール名:空欄、年間スケジュールモード名:空欄 週間スケジュール名:就業日、変動タイプ:①折線状スケジュール:（デフォルト値を使用）平日...0:00に0、24:00に0</td>
</tr>
<tr>
<td>空調</td>
<td></td>
<td>年間スケジュール名:空欄、年間スケジュールモード名:空欄 週間スケジュール名:就業日、変動タイプ:②階段状スケジュール:平日...8:00まで0（非空調）、8:00まで2（予冷熱）、22:00まで1（空調）、24:00まで0休日、その他...24:00まで0</td>
</tr>
<tr>
<td>外気導入</td>
<td></td>
<td>年間スケジュール名:空欄、年間スケジュールモード名:空欄 週間スケジュール名:就業日、変動タイプ:②階段状スケジュール:平日...8:00まで0（非導入）、22:00まで1（導入）、24:00まで0休日、その他...24:00まで0</td>
</tr>
</tbody>
</table>

【注記】1)項目は、入力画面の種類に対応している。名称、内容の欄がともに「-」となっている項目は、該当するマスター画面を開いてデータ設定する必要はない。2)内容欄に記載していない項目は、本ケースでは計算に使用しない条件で、画面上はデフォルト値のままよい。
表2.2-2 最大負荷計算用の基本条件

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>計算時間間隔</td>
<td>—</td>
<td>建築計算時間間隔スケジュール名：建築計算時間間隔</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>解法設定用空調スケジュール名：解法設定用空調</td>
</tr>
<tr>
<td>軸高など</td>
<td>—</td>
<td>軸高：59.6m、地表面反射率（共通値）：0.2</td>
</tr>
</tbody>
</table>

壁体構造

<table>
<thead>
<tr>
<th></th>
<th>内壁</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>壁タイプ：内壁、層数：5、熱貫流率：1.81W/㎡K</td>
<td>建築計算時間間隔スケジュール名：建築計算時間間隔</td>
</tr>
<tr>
<td></td>
<td>部材構成：石膏板(ID=24)22mm、非密閉空気層(ID=63)、石膏板(ID=24)22mm (室内側から順、ライブラリは空気調和・衛生工学便覧、以降も同様)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>解法設定用空調スケジュール名：解法設定用空調</td>
</tr>
<tr>
<td></td>
<td>外壁</td>
<td></td>
</tr>
<tr>
<td></td>
<td>壁タイプ：外壁、層数：5、熱貫流率：0.87W/㎡K</td>
<td>建築計算時間間隔スケジュール名：建築計算時間間隔</td>
</tr>
<tr>
<td></td>
<td>部材構成：石膏板(ID=24)22mm、吹付け硬質ウレタン(ID=58)20mm、PCコンクリート(ID=15)150mm、タイル(ID=28)10mm</td>
<td></td>
</tr>
</tbody>
</table>

基本

<table>
<thead>
<tr>
<th></th>
<th>外部日除け</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水平庇</td>
<td></td>
</tr>
<tr>
<td></td>
<td>外壁幅X1：0m、窓幅Y2：1.5m、外壁角：0m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>外壁高さY1：0.8m、窓高さY2：2.75m、軒高さ：90m、部材構成：石膏板(ID=24)22mm</td>
<td>建築計算のデータ保存</td>
</tr>
<tr>
<td></td>
<td>腰壁高さY3：0.45m、部材構成：石膏板(ID=24)22mm</td>
<td>建築結果</td>
</tr>
<tr>
<td></td>
<td>庇無し</td>
<td></td>
</tr>
<tr>
<td></td>
<td>外壁幅X1：0m、窓幅Y2：0m、外壁角：0m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>外壁高さY1：0.8m、窓高さY2：2.75m、軒高さ：90m、部材構成：石膏板(ID=24)22mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腰壁高さY3：0.45m、部材構成：石膏板(ID=24)22mm</td>
<td></td>
</tr>
</tbody>
</table>

非連成計算 空調運転モード

<table>
<thead>
<tr>
<th></th>
<th>夏期冷房</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>空調スケジュール名：空調、外気導入スケジュール名：外気導入</td>
<td></td>
</tr>
<tr>
<td></td>
<td>瞭熱処理：冷蔵、設定室温：26℃、潜熱処理：除湿、設定設定温度：50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>中間期冷房</td>
<td></td>
</tr>
<tr>
<td></td>
<td>空調スケジュール名：空調、外気導入スケジュール名：外気導入</td>
<td></td>
</tr>
<tr>
<td></td>
<td>瞭熱処理：冷蔵、設定室温：24℃、潜熱処理：除湿</td>
<td></td>
</tr>
<tr>
<td></td>
<td>冬期暖房</td>
<td></td>
</tr>
<tr>
<td></td>
<td>空調スケジュール名：空調、外気導入スケジュール名：外気導入</td>
<td></td>
</tr>
<tr>
<td></td>
<td>瞭熱処理：加熱、設定室温：22℃、潜熱処理：加湿</td>
<td></td>
</tr>
<tr>
<td></td>
<td>中間期暖房</td>
<td></td>
</tr>
<tr>
<td></td>
<td>空調スケジュール名：空調、外気導入スケジュール名：外気導入</td>
<td></td>
</tr>
<tr>
<td></td>
<td>瞭熱処理：加熱、設定室温：24℃</td>
<td></td>
</tr>
</tbody>
</table>

建築計算のデータ保存 建築結果

| | 3/31まで冬期冷房、4/30まで中間期冷房、5/31まで中間期冷房、9/30まで夏期冷房、10/31まで中間期暖房、11/30まで中間期暖房、12/31まで冬期暖房 | |

【注記】1) 項目は、入力画面の種類に対応している。名称、内容の欄がともに「—」となっている項目は、該当するマスター画面を開いてデータ設定する必要はない。2) 内容欄に記載していない項目は、本ケースでは計算に使用しない。
表.2.2-3 最大負荷計算用の一括仕様設定条件・空間構成条件

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>外壁条件</td>
<td>共通外壁</td>
<td>壁体構造名：外壁、部位タイプ：壁、屋外条件：通気外気、日射吸収率：0.7、長波放射率：0.9</td>
</tr>
<tr>
<td>内壁条件</td>
<td>共通内壁</td>
<td>壁体構造名：内壁、部位タイプ：壁、屋内条件：窓、温度差係数：0.3</td>
</tr>
<tr>
<td>外壁</td>
<td>共通天井</td>
<td>壁体構造名：天井、部位タイプ：天井、屋内条件：天井、屋外条件：屋外</td>
</tr>
<tr>
<td>内壁</td>
<td>共通床</td>
<td>壁体構造名：床、部位タイプ：床、屋内条件：床、屋外条件：屋外</td>
</tr>
<tr>
<td>家具類条件</td>
<td>共通家具</td>
<td>顕熱熱容量：15J/(lit・K)、潜熱熱容量係数：1</td>
</tr>
<tr>
<td></td>
<td>共通梁</td>
<td>顕熱熱容量：8J/(lit・K)、潜熱熱容量係数：1</td>
</tr>
<tr>
<td>室条件</td>
<td>共通窓</td>
<td>ブラインド 操作方法：スラット角の自動制御、色：中間色</td>
</tr>
<tr>
<td></td>
<td>共通照明</td>
<td>照明 一括仕様設定名：共通照明、照明発熱：0kW、調光計算：あり</td>
</tr>
<tr>
<td></td>
<td>共通機器</td>
<td>使用率スケジュール名：機器使用率、冷却方式：強制冷凍、顕熱発熱量：0W/㎡</td>
</tr>
<tr>
<td>人体条件</td>
<td>共通人体</td>
<td>代謝量（夏期）：1.2met、(冬期)：1.2met、(中間期)：1.2met</td>
</tr>
<tr>
<td></td>
<td>共通隙間風</td>
<td>計算法：換気回数法、換気回数：0.2回/h、外壁気密性：普通</td>
</tr>
<tr>
<td>窓條件</td>
<td>共通窓</td>
<td>窓通気量：5.7lit/(sec・㎡)、ガラス 複層ガラス空気層12mm、熱吸ブロンズ</td>
</tr>
<tr>
<td>照明</td>
<td>共通照明</td>
<td>照明発熱：20W/㎡、調光計算：あり、照明発光効率：100lm/W</td>
</tr>
<tr>
<td>機器</td>
<td>共通機器</td>
<td>使用率スケジュール名：機器使用率、冷却方式：強制冷凍、顕熱発熱量：0W/㎡</td>
</tr>
<tr>
<td>人体</td>
<td>共通人体</td>
<td>代謝量（夏期）：1.2met、(冬期)：1.2met、(中間期)：1.2met</td>
</tr>
<tr>
<td>隙間風条件</td>
<td>共通隙間風</td>
<td>計算法：換気回数法、換気回数：0.2回/h、外壁気密性：普通</td>
</tr>
<tr>
<td>窓</td>
<td>共通窓</td>
<td>窓通気量：5.7lit/(sec・㎡)、ガラス 複層ガラス空気層12mm、熱吸ブロンズ</td>
</tr>
<tr>
<td>照明</td>
<td>共通照明</td>
<td>照明発熱：20W/㎡、調光計算：あり、照明発光効率：100lm/W</td>
</tr>
<tr>
<td>機器</td>
<td>共通機器</td>
<td>使用率スケジュール名：機器使用率、冷却方式：強制冷凍、顕熱発熱量：0W/㎡</td>
</tr>
<tr>
<td>人体</td>
<td>共通人体</td>
<td>代謝量（夏期）：1.2met、(冬期)：1.2met、(中間期)：1.2met</td>
</tr>
<tr>
<td>隙間風条件</td>
<td>共通隙間風</td>
<td>計算法：換気回数法、換気回数：0.2回/h、外壁気密性：普通</td>
</tr>
</tbody>
</table>

一括仕様設定

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>室グループ名</td>
<td>室</td>
<td>ゾーン設定（空間構成）室グループ名：室</td>
</tr>
<tr>
<td>窓</td>
<td>共通窓</td>
<td>窓通気量：5.7lit/(sec・㎡)、ガラス 複層ガラス空気層12mm、熱吸ブロンズ</td>
</tr>
<tr>
<td>照明</td>
<td>共通照明</td>
<td>照明発熱：20W/㎡、調光計算：あり、照明発光効率：100lm/W</td>
</tr>
<tr>
<td>機器</td>
<td>共通機器</td>
<td>使用率スケジュール名：機器使用率、冷却方式：強制冷凍、顕熱発熱量：0W/㎡</td>
</tr>
<tr>
<td>人体</td>
<td>共通人体</td>
<td>代謝量（夏期）：1.2met、(冬期)：1.2met、(中間期)：1.2met</td>
</tr>
<tr>
<td>隙間風条件</td>
<td>共通隙間風</td>
<td>計算法：換気回数法、換気回数：0.2回/h、外壁気密性：普通</td>
</tr>
</tbody>
</table>

表.2.2-4 最大負荷計算用のゾーン設定条件

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>窓</td>
<td>共通窓</td>
<td>窓通気量：5.7lit/(sec・㎡)、ガラス 複層ガラス空気層12mm、熱吸ブロンズ</td>
</tr>
<tr>
<td>照明</td>
<td>共通照明</td>
<td>照明発熱：20W/㎡、調光計算：あり、照明発光効率：100lm/W</td>
</tr>
<tr>
<td>機器</td>
<td>共通機器</td>
<td>使用率スケジュール名：機器使用率、冷却方式：強制冷凍、顕熱発熱量：0W/㎡</td>
</tr>
<tr>
<td>人体</td>
<td>共通人体</td>
<td>代謝量（夏期）：1.2met、(冬期)：1.2met、(中間期)：1.2met</td>
</tr>
<tr>
<td>隙間風条件</td>
<td>共通隙間風</td>
<td>計算法：換気回数法、換気回数：0.2回/h、外壁気密性：普通</td>
</tr>
</tbody>
</table>

【注記】1) 項目は、入力画面の種類に対応している。名称、内容の欄がともに「-」となっている項目は、該当するマスター画面を開いてデータ設定する必要はない。2) 内容欄に記載していない項目は、本ケースでは計算に使用しない条件で、画面上はデフォルト値のままでよい。
<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゾーン</td>
<td>インテリア</td>
<td>天井高さ: 4m, ソーン床面積: 675.84㎡, 床面地上高: 24m</td>
</tr>
<tr>
<td>外壁</td>
<td>外壁北</td>
<td>- 一括仕様設定名: 共通外壁、外表面名: 北、外壁面積: 153.6㎡</td>
</tr>
<tr>
<td>天井</td>
<td>- 一括仕様設定名: 共通天井、内壁面積: 675.84㎡</td>
<td></td>
</tr>
<tr>
<td>内壁</td>
<td>外壁北</td>
<td>- 一括仕様設定名: 共通外壁、内壁面積: 153.6㎡</td>
</tr>
<tr>
<td>外壁東</td>
<td>- 一括仕様設定名: 共通外壁、内壁面積: 153.6㎡</td>
<td></td>
</tr>
<tr>
<td>外壁南</td>
<td>- 一括仕様設定名: 共通外壁、内壁面積: 153.6㎡</td>
<td></td>
</tr>
<tr>
<td>内壁</td>
<td>内壁</td>
<td>- 一括仕様設定名: 共通内壁、内壁面積: 153.6㎡</td>
</tr>
<tr>
<td>天井</td>
<td>外壁北</td>
<td>- 一括仕様設定名: 共通外壁、内壁面積: 153.6㎡</td>
</tr>
<tr>
<td>床</td>
<td>- 一括仕様設定名: 共通床、内壁面積: 675.84㎡</td>
<td></td>
</tr>
<tr>
<td>家具類</td>
<td>家具類</td>
<td>- 一括仕様設定名: 共通家具</td>
</tr>
<tr>
<td>梁</td>
<td>- 一括仕様設定名: 共通梁</td>
<td></td>
</tr>
<tr>
<td>外壁北</td>
<td>- 一括仕様設定名: 共通外壁、外表面名: 北、外壁面積: 25.6㎡</td>
<td></td>
</tr>
<tr>
<td>项目</td>
<td>内容</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>【注記】</td>
<td>1) 項目は、入力画面の種類に対応している。名称、内容の欄がともに“-”となっている項目は、該当するマスタ画面を開いてデータ設定する必要はない。 2) 内容欄に記載していない項目は、本ケースでは計算に使用しない条件で、画面上はデフォルト値のままでよい。</td>
<td></td>
</tr>
<tr>
<td>時刻</td>
<td>照明点灯率</td>
<td>機器使用率</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>0:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>17:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>18:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>19:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>22:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>23:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

図2.2-1 内部発熱スケジュール（平日）
（2）最大熱負荷計算の結果

最大熱負荷計算の結果を図 2.2-2、図 2.2-3 に示します。図 2.2-2 では、インテリア、東ベリメータ、西ベリメータ、3 ゾーンの装置負荷（顯熱、潜熱）を表わしており、図 2.2-3 では、その時の各ゾーンの PMV と室温、外気温を表わしています。図 2.2-2 より各ゾーンの装置負荷をまとめると表 2.2-7 のようになります。

表 2.2-7 装置負荷のまとめ（予冷熱 30 分間かつ外気カット）

<table>
<thead>
<tr>
<th></th>
<th>インテリア</th>
<th>東ベリメータ</th>
<th>西ベリメータ</th>
</tr>
</thead>
</table>

図 2.2-2 最大熱負荷計算の結果（装置負荷）

図 2.2-3 最大熱負荷計算の結果（PMV と温度）
2.3 年間負荷計算のためのデータ設定と実行

これまで作成した最大負荷計算データに、下記の3項目を追加するだけで年間負荷計算を行うためのデータが作成可能です。

(1) 気象
(2) 計算範囲
(3) 特別休日

「(3)特別休日」は、年間負荷計算のために新たに設定します。

上記の他に、年間負荷計算では空調の装置容量の設定が必要ですが、最大負荷計算データの作成時に、「装置容量を最大負荷計算計算結果に自動設定する」ようにしてあるので、ここで設定する必要はありません。

また、最大負荷計算用に用意した時刻変動スケジュールの「空調」では、予冷熱時間帯をそれ以外の時間帯と区別しており、年間負荷計算でも同じデータを使用しますが、年間負荷計算では予冷熱時間帯も通常の空調時間帯と同じ扱いとなり、設定温湿度を満たすための要求熱量が装置容量を超えると、温湿度が設定値から上下する結果となるような計算をします。

2.3.1 最大負荷計算データの変更手順

最大負荷計算データを保存していることを確認し、最大負荷計算データをワークスペースに表示させて、年間負荷も実行可能な計算データに変更していきます。

(1) 気象
[共通]タブをクリックして共通画面を表示させ、マスターの[気象]フォルダー内の[気象]画面を新たに開き、次の設定を追加します。

気象名称: 年間負荷計算用気象
気象データのタイプ: 実在年データ
気象データ名称: BEST1 分值
地点: 関東－東京－東京（地点番号: 363）

(2) 計算範囲
共通画面のマスターの[計算範囲]フォルダー内の[計算範囲]画面を新たに開き、次の設定を追加します。

計算範囲名称: 年間負荷計算
計算タイプ: 通常計算
建築計算: する
設備計算: しない
本計算開始日: 2006/1/1
本計算終了日: 2006/12/31
助走計算日数: 20 日
最小計算時間間隔: 5 分
気象名称: 年間負荷計算用気象

(3) 特別休日
共通画面のマスターの[特別休日]フォルダー内の「特別休日」画面を開き、次の6日間を特別休日として設定します。1日ずつ指定でも、開始日と終了日の期間での指定でも、どちらでも可能です。

月/日: 1/1－1/3, 12/29－12/31

以上で、年間負荷計算用のデータ作成が完了しましたので、年間負荷計算を実行することができます。
2.3.2 計算実行と結果の確認

シミュレーションを実行します。メニューバーの「計算実行(E)」から「シミュレーション実行」を選びます。現れた画面で、計算範囲のプルダウンメニューから「年間負荷計算」を選択して、OKボタンをクリックしてください。

図 2.3.2-1 年間負荷計算実行の画面

年間負荷計算の場合は月別値の結果も出力されます。BESTのメニューバーの「結果出力(O)」から「結果表示」を選び、結果ファイルで“bestBuilM.csv”を選択すると、各種熱負荷、室内温湿度、作用温度、PMV、気象などの月積算値や月別平均値を調べることができます。「13月」という表記の最下行には、年間平均値や積算値が表示されています。

図 2.3.2-2 結果表示画面（年間負荷月別値）
月別装置負荷グラフ
時刻変動値の場合と同様に、月別値の変動をグラフに表示して特徴を確認することもできます。冷房、暖房の月別全熱装置負荷の棒グラフを表示させるための設定画面を示します。参照ファイルで“bestBuildM.csv”を選択すると、表示期間の初期設定が13月（99日99時99分）までになっていますので、12月までに修正してください。

図2.3.2-3 月別装置負荷変動グラフの出力指定
[グラフ表示]ボタンを押すと、図2.3.2-4の様な負荷を月別に集計した棒グラフを描くことができます。

図2.3.2-4 月別装置負荷変動グラフ
夏期、冬期代表期間の装置負荷と室温の変動も、bestBuilU.csv ファイルを開くことにより、下図のようにグラフ表示することが出来ます。

(b) 夏期代表1週間の装置負荷と室温の変動グラフ【期間：2006.8.5（土）〜8.11（金）】
(e) 冬期1週間の装置負荷と室温の変動グラフ [期間: 2006.2.4（土）〜2.10（金）]

図 2.3.2-6 装置負荷変動グラフ（冬期）
3. 空調・建築の連成計算
ここからは、Aビルのシステム側の入力について説明します。今回は建物全体テンプレートを活用していきます。複雑な接続はテンプレート内で完了しているため、建物側とシステム側の連成設定や、機器スペックの変更のみで計算実行が可能となります。入力自体は5時間程度あれば十分です。初めてBESTを入力する方でも、建物全体エネルギー消費量を効率的に算出できる方法ですので、ぜひ活用して頂きたいと思います。

3.1 空調設備のデータ設定
建築データが単独で正しく計算されたことが確認され、続いて空調・建築連成計算の設定し、設備システムの入力を行っていきます。Aビルでは建物全体テンプレートを活用します。

(1) 空調・建築連成計算の設定
まず、下表のような条件で連成計算用建築データを作成します。

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>共通</td>
<td>時刻変動スケジュール（連成用）</td>
<td>建築計算時間間隔スケジュール名：建築計算時間間隔（連成用）</td>
</tr>
<tr>
<td></td>
<td>日時変動スケジュール</td>
<td></td>
</tr>
<tr>
<td></td>
<td>週間スケジュール名：就業日、変動タイプ：②階段状スケジュール</td>
<td></td>
</tr>
<tr>
<td></td>
<td>建築計算時間間隔スケジュール名：建築計算時間間隔（連成用）</td>
<td></td>
</tr>
</tbody>
</table>

【注記】建築単独年間熱負荷計算用データに対して、変更する項目のみを記載した。

(2) テンプレートの追加
今回は、建物全体のエネルギー消費量を求めることを目的とするため、マスター画面内の「テンプレート建築設備」を例題モデル基準ゾーンVAV冷凍水発生機+HPチラー20101111を登録し、モデル化を進めていきます。

【用語説明】
・テンプレート
システム計算におけるモジュール群を予め接続しておいて一つの塊としてパッケージ化したもの。今回の場合、空調、熱源、換気、衛生、電気設備全体がパッケージ化されているテンプレートを活用。各設備間の連成計算が容易に行える。一部を追加、削除することで、各種建物仕様にも対応可能なる。
（3） 空調機スペック入力

各モジュールのスペックを最大熱負荷計算や実仕様に基づき、入力していきます。

空調機システムは下図のような変風量単ダクト方式を定義します。以下ののような方針でモデル化を行います。

A) ゾーニングは西ペリメータ、インテリア、東ペリメータに分け、各ゾーンに空調機を1台、VAVユニットを1台設置する

B) 基準階のみを空調対象とし、1階および最上階は計算しない。建物全体エネルギー算出には基準階×基準階階数(=14)とする。

図3.1-2 空調機システム、ゾーニング
下表にインテリア系統空調機 (AHU1) 仕様、ベリーメータ系統空調機 (AHU2, AHU3) 仕様を示します。テンプレート内では AHU1, AHU2 のみ、既にモジュールが定義されていますが、AHU3 はモジュール事態を新たに定義することとします。

<table>
<thead>
<tr>
<th>表 3.1-2 空調機器仕様 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
</tr>
<tr>
<td>空調機制御</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OAチャンバー</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

SAファン簡易VAV	定格風量	12000m³/h
	風量	2800m³/h
	定格消費電力	15kW
	空調機材数	3
	電圧	200V
	周波数	50Hz
	電力	0.8

RAファン簡易VAV	定格風量	12000m³/h
	風量	2800m³/h
	定格消費電力	15kW
	空調機材数	3
	電圧	200V
	周波数	50Hz
	電力	0.8

加湿器	定格加湿量	1L/min
	開始時刻	9:00-22:00
	終了時刻	4/1-11/30
	自動調整する	チェック
	mode1 室内相対湿度設定値	0
	比例ゲイン	0.05
	積分時間	600
	微分時間	0
	計算時間間隔	300s
	正逆動作	正動作
	mode2 室内相対湿度設定値	40
	比例ゲイン	0.01
	積分時間	600
	微分時間	0
	計算時間間隔	300s
	正逆動作	正動作

冷温水コイル	定格風量	15000m³/h
	風量	330L/min
	空間温度設定値	13
	比例ゲイン	0.001
	積分時間	600
	微分時間	0
	計算時間間隔	300s
	正逆動作	正動作

冷温水コイル	定格風量	15000m³/h
	風量	330L/min
	空間温度設定値	23
	比例ゲイン	0.001
	積分時間	600
	微分時間	0
	計算時間間隔	300s
	正逆動作	正動作
表 3.1-3 空調機器仕様 2

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>空調機制御</td>
<td>このスケジュールを使用する</td>
<td>チェック</td>
</tr>
<tr>
<td></td>
<td>空調機運転 開始時刻-終了時刻</td>
<td>9:00-22:00</td>
</tr>
<tr>
<td></td>
<td>外気取入 開始時刻-終了時刻</td>
<td>9:00-22:00</td>
</tr>
<tr>
<td></td>
<td>冷房 開始時刻-終了時刻</td>
<td>4/1-11/30</td>
</tr>
<tr>
<td></td>
<td>暖房 開始時刻-終了時刻</td>
<td>12/1-3/31</td>
</tr>
<tr>
<td></td>
<td>空調スケジュール</td>
<td>チェック：月～金曜日</td>
</tr>
<tr>
<td>OAチャンバー</td>
<td>外気流量</td>
<td>460m³/h</td>
</tr>
<tr>
<td></td>
<td>定格流量</td>
<td>6000m³/h</td>
</tr>
<tr>
<td></td>
<td>最小流量</td>
<td>460m³/h</td>
</tr>
<tr>
<td></td>
<td>電圧</td>
<td>200V</td>
</tr>
<tr>
<td></td>
<td>頻度数</td>
<td>50Hz</td>
</tr>
<tr>
<td></td>
<td>力率</td>
<td>0.8</td>
</tr>
<tr>
<td>SAファン簡易VAV</td>
<td>定格流量</td>
<td>5540m³/h</td>
</tr>
<tr>
<td></td>
<td>最小流量</td>
<td>460m³/h</td>
</tr>
<tr>
<td></td>
<td>定格消費電力</td>
<td>3.7kW</td>
</tr>
<tr>
<td></td>
<td>相数</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>電圧</td>
<td>200V</td>
</tr>
<tr>
<td></td>
<td>頻度数</td>
<td>50Hz</td>
</tr>
<tr>
<td></td>
<td>力率</td>
<td>0.8</td>
</tr>
<tr>
<td>RAファン簡易VAV</td>
<td>定格流量</td>
<td>5540m³/h</td>
</tr>
<tr>
<td></td>
<td>最小流量</td>
<td>460m³/h</td>
</tr>
<tr>
<td></td>
<td>定格消費電力</td>
<td>3.7kW</td>
</tr>
<tr>
<td></td>
<td>相数</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>電圧</td>
<td>200V</td>
</tr>
<tr>
<td></td>
<td>頻度数</td>
<td>50Hz</td>
</tr>
<tr>
<td></td>
<td>力率</td>
<td>0.8</td>
</tr>
<tr>
<td>加湿器</td>
<td>定格加湿量</td>
<td>1L/min</td>
</tr>
<tr>
<td></td>
<td>相対湿度設定値</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>最大流量</td>
<td>1L/min</td>
</tr>
<tr>
<td>加湿器 2方弁</td>
<td>定格流量</td>
<td>0L/min</td>
</tr>
<tr>
<td>冷温水コイル</td>
<td>自動調整する</td>
<td>チェック</td>
</tr>
<tr>
<td></td>
<td>mode1 室内相対湿度設定値</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>比例ゲイン</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>積分時間</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>微分時間</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>計算時間間隔</td>
<td>300s</td>
</tr>
<tr>
<td></td>
<td>正逆動作</td>
<td>逆動作</td>
</tr>
<tr>
<td>冷温水コイル 2方弁</td>
<td>自動調整する</td>
<td>チェック</td>
</tr>
<tr>
<td></td>
<td>mode2 空気温度設定値</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>比例ゲイン</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>積分時間</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>微分時間</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>計算時間間隔</td>
<td>300s</td>
</tr>
<tr>
<td></td>
<td>正逆動作</td>
<td>逆動作</td>
</tr>
</tbody>
</table>

※AHU3 はモジュール自体を新たに追加
下表にテンプレートフォーマットからの変更部分を示します。今回の空調機風量やコイル能力は最大熱負荷計算の結果を基に決定しています。その他、PID制御モジュールの各設定値は自動調整機能を用い、調整していくこととします。

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>入力画面</th>
<th>内容(テンプレートフォーマットから変更部分のみ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>・インテリア</td>
<td>tm BE tm AHU1</td>
<td></td>
<td>定格風量 15000 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>最小風量 2800 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格消費電力 15kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>東ベリメータ、西ベリメータ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格風量 6000 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>最小風量 460m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格消費電力 3.7kW</td>
</tr>
<tr>
<td>tm BE tm AHU2</td>
<td></td>
<td></td>
<td>定格風量 12200 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>最小風量 2800 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格消費電力 15kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>東ベリメータ、西ベリメータ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格風量 5540 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>最小風量 460m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格消費電力 3.7kW</td>
</tr>
<tr>
<td>tm BE tm AHU3</td>
<td></td>
<td></td>
<td>定格風量 15000 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>最小風量 2800 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格消費電力 15kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>東ベリメータ、西ベリメータ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格風量 6000 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>最小風量 460m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定格消費電力 3.7kW</td>
</tr>
</tbody>
</table>

表 3.1-4 空調機器スペック入力例

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>入力画面</th>
<th>内容(テンプレートフォーマットから変更部分のみ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• インテリア</td>
<td>tm 空調機 VAV SA ファン簡易 VAV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• インテリア</td>
<td>tm 空調機 VAV RA ファン簡易 VAV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• インテリア</td>
<td>tm 空調機 VAV OA チャンバー</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• インテリア</td>
<td>tm 空調機 VAV 冷温水コイル</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
建物側と空調システムを接続するのためのゾーンモジュールは表1.3-4のように定義します。AHU3モジュールを新たに追加するに伴い、AHU3 と西ペリメータゾーンを接続するためのゾーンモジュール（tmZ3 テンプレート ゾーン 5 VAV 例題モデル基準ゾーン）を追加します。また、テンプレートでは1ゾーンに5つのVAVユニットが定義されていますが、今回は1ゾーンにVAVユニット1台を定義することとします。

表 3.1-5 ゾーンモジュールスペック入力例

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>入力画面</th>
<th>内容(テンプレートフォーマットから変更部分のみ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmBE tmZ1 テンプレート ゾーン 5 VAV 例題モデル基準ゾーン</td>
<td>tmゾーン ゾーン1 システム接続用</td>
<td>室グループ/室/ゾーン</td>
<td>室グループ/室/ゾーン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air入口接続ノード数</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air出口接続ノード数</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heat入口接続ノード数</td>
</tr>
<tr>
<td>tmBE tmZ2 テンプレート ゾーン 5 VAV 例題モデル基準ゾーン</td>
<td>tmゾーン ゾーン1 システム接続用</td>
<td>室グループ/室/ゾーン</td>
<td>室グループ/室/ゾーン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air入口接続ノード数</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air出口接続ノード数</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heat入口接続ノード数</td>
</tr>
<tr>
<td>tmBE tmZ3 テンプレート ゾーン 5 VAV 例題モデル基準ゾーン</td>
<td>tmゾーン ゾーン1 システム接続用</td>
<td>室グループ/室/ゾーン</td>
<td>室グループ/室/ゾーン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air入口接続ノード数</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air出口接続ノード数</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heat入口接続ノード数</td>
</tr>
</tbody>
</table>

【用語説明】
・ゾーンシステム接続用
空調機と建物ゾーンを接続するために必要なモジュール。スペックで接続したい建物ゾーンを選択し、シーケンス接続にて設備側との接続を行う。建築・設備の適正計算にて必ず必要となる。

(4) 空調機、ゾーンのシーケンス接続
各モジュールのスペック入力が終わったら、次にモジュール間の情報のやり取りを可能とするためにシーケンス接続を行います。AHU1,AHU2 とそれに付随するゾーンモジュール（tmZ1 と tmZ2）は既にシーケンス接続が完了している状態ですので今回はAHU3 とtmZ3 モジュールのシーケンス接続を行っています。
AHU3のシーケンス接続

図3.1-3にAHU3の接続端子一覧と各接続端子の接続先示します。一覧の各接続端子の番号と接続情報の番号が対応しており、接続端子名の欄が接続先の端子名を意味しています。
下図にtm Z3の接続端子一覧と各接続端子の接続先示します。AHU3同様、一覧の各接続端子の番号と接続情報の番号が対応しており、接続端子名の欄が接続先の端子名を意味しています。
3.2 熱源設備のデータ設定

空調機のスペック・シーケンス接続が終わったら、熱源機器の入力に移ります。今回のモデルでは数のような吸収式冷温水発生機+空冷 HP の熱源を定義していきます。熱源についてはテンプレート内でシーケンス接続が完了しているため、スペック入力のみとなります。また、熱源機器を変更して検討したい場合は、シーケンス接続を保持したままテンプレートごとの変更が可能です。

![熱源システム図](image.png)

図 3.2-1 熱源システム

表 3.2-1 に熱源機器仕様を示します。吸収式冷温水発生機をベース運転とする熱源台数制御を行うこととします。
表 3.2-2 に配管分岐・集合、配管質量流量拡大・縮小、集合モジュールのスペック情報を示します。2次側空調機 3 台、建物階数 14 階により各スペックが決定しています。
表 3.2-3 に各熱源機器のスペック入力情報を示します。熱源容量は基準階空調機容量×建物階数 14 階分を処理可能な容量として選定しています。ここまで入力が完了したら、空調設備についての入力は完了です。
表 3.2-1 熱源機器仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱源台数制御（2台用冷暖別）</td>
<td>冷房 No1への定格流量</td>
<td>4050L/min</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格流量</td>
<td>2680L/min</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格流量</td>
<td>4050L/min</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格流量</td>
<td>2680L/min</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>冷房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No1への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>暖房 No2への定格温度差</td>
<td>5℃</td>
</tr>
<tr>
<td></td>
<td>冷水熱源出口の設定温度</td>
<td>7℃</td>
</tr>
<tr>
<td></td>
<td>暖水熱源出口の設定温度</td>
<td>45℃</td>
</tr>
<tr>
<td></td>
<td>台数減のディファレンシャルの率</td>
<td>0.2</td>
</tr>
</tbody>
</table>
表 3.2-2 配管モジュールスペック入力例

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>入力画面</th>
<th>内容（テンプレートフォーマットから変更部分のみ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmBE 配管分岐（1→n）</td>
<td>出口接続ノード数 3</td>
<td>ヘッダ入口最大流量 6 8000l/min</td>
<td></td>
</tr>
<tr>
<td>tmBE 配管集合（n→1）</td>
<td>入口接続ノード数 3</td>
<td>mailer</td>
<td></td>
</tr>
<tr>
<td>tmBE 配管質量流量拡大</td>
<td>流量拡大倍率 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmBE 配管質量流量縮小</td>
<td>流量縮小倍率 14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【用語説明】
- 配管分岐/集合
 2次側空調機の台数で分岐/集合数を決定する。今回の場合はインテリア、東ペリメータ、西ペリメータの3ゾーンなので「3」を設定している。
- 配管質量流量拡大/縮小
 2次側流量を1次側で建物階数分拡大するとき、1次側流量を基準階分縮小するときに利用。今回の場合は、基準階が14階ある想定のため「14」を設定している。

表 3.2-3 熱源機器スペック入力例

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>入力画面</th>
<th>内容（テンプレートフォーマットから変更部分のみ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmBE tmHSG テンプレート 熱源群 熱源2台（冷温水発生機+HPチラー）の台数制御</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmHS 冷温水発生機</td>
<td>定格冷却能力 1407kW</td>
<td>定格冷却能力 1178kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格加熱能力 1178kW</td>
<td>定格冷温水流量 115000kg/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格冷却水流量 67500kg/s</td>
<td>定格ガス消費量 1370kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格冷温水流量 1370kW</td>
<td>定格消費電力 冷却時 6.3kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格消費電力 加熱時 5.9kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmHS ヒートポンプチラー</td>
<td>定格冷却能力 935kW</td>
<td>定格加熱能力 990kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格流量 2680l/min</td>
<td>定格消費電力 261kW</td>
<td></td>
</tr>
<tr>
<td>tmHS 冷却塔 吸収式用</td>
<td>定格冷却水流量 6900l/min</td>
<td>定格消費電力 8.8kW</td>
<td></td>
</tr>
<tr>
<td>tmHS CH ポンプ</td>
<td>定格冷却能力 1407kW</td>
<td>定格冷却能力 1178kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格加熱能力 1178kW</td>
<td>定格冷温水流量 115000kg/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格冷却水流量 67500kg/s</td>
<td>定格ガス消費量 1370kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格冷温水流量 1370kW</td>
<td>定格消費電力 冷却時 6.3kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>定格消費電力 加熱時 5.9kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmHS CD ポンプ</td>
<td>定格流量 69000l/min</td>
<td>定格消費電力 45kW</td>
<td></td>
</tr>
</tbody>
</table>
3.3 換気設備のデータ設定

換気設備は図3.3-1のようす便所の各階コアタイム稼動排気ファン及び、機械室関連、駐車場の24時間制御系統に分類し、制御を行います。テンプレート内には基準階EAファンが設置されていないため、スペック入力・シーケンス接続を新たに行います。表3.3-1に換気設備データ設定一覧、表3.3-2にスペック入力例を示します。

図3.3-1 換気システム

表3.3-1 換気システム

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>基準階</td>
<td></td>
<td></td>
</tr>
<tr>
<td>換気装置制御</td>
<td>このスケジュールを使用するチェック</td>
<td></td>
</tr>
<tr>
<td>運転</td>
<td>開始時刻～終了時刻</td>
<td>8:00-22:00</td>
</tr>
<tr>
<td>冷房</td>
<td>開始月日～終了月日</td>
<td>4/1-11/30</td>
</tr>
<tr>
<td>暖房</td>
<td>開始月日～終了月日</td>
<td>12/1-3/31</td>
</tr>
<tr>
<td>換気スケジュール</td>
<td></td>
<td>チェック：月〜金曜日</td>
</tr>
<tr>
<td>便所 EAファン</td>
<td>定格風量</td>
<td>1,000m³/h</td>
</tr>
<tr>
<td></td>
<td>定格消費電力</td>
<td>0.45kW</td>
</tr>
<tr>
<td></td>
<td>換気制御方式</td>
<td>0 タイムスケジュール</td>
</tr>
<tr>
<td></td>
<td>制御効率係数</td>
<td>1</td>
</tr>
<tr>
<td>換気装置制御</td>
<td>このスケジュールを使用するチェック</td>
<td></td>
</tr>
<tr>
<td>運転</td>
<td>開始時刻～終了時刻</td>
<td>0:00-24:00</td>
</tr>
<tr>
<td>冷房</td>
<td>開始月日～終了月日</td>
<td>4/1-11/30</td>
</tr>
<tr>
<td>暖房</td>
<td>開始月日～終了月日</td>
<td>12/1-3/31</td>
</tr>
<tr>
<td>換気スケジュール</td>
<td></td>
<td>チェック：月〜金曜日</td>
</tr>
<tr>
<td>EV機械室SA・EAファン</td>
<td>定格風量</td>
<td>1,500m³/h</td>
</tr>
<tr>
<td></td>
<td>定格消費電力</td>
<td>0.23kW</td>
</tr>
<tr>
<td></td>
<td>換気制御方式</td>
<td>0 タイムスケジュール</td>
</tr>
<tr>
<td></td>
<td>制御効率係数</td>
<td>1</td>
</tr>
<tr>
<td>熱源機械室SA・EAファン</td>
<td>定格風量</td>
<td>5,000m³/h</td>
</tr>
<tr>
<td></td>
<td>定格消費電力</td>
<td>1.5kW</td>
</tr>
<tr>
<td></td>
<td>換気制御方式</td>
<td>0 タイムスケジュール</td>
</tr>
<tr>
<td></td>
<td>制御効率係数</td>
<td>1</td>
</tr>
<tr>
<td>電気室SA・EAファン</td>
<td>定格風量</td>
<td>5,000m³/h</td>
</tr>
<tr>
<td></td>
<td>定格消費電力</td>
<td>1.5kW</td>
</tr>
<tr>
<td></td>
<td>換気制御方式</td>
<td>0 タイムスケジュール</td>
</tr>
<tr>
<td></td>
<td>制御効率係数</td>
<td>1</td>
</tr>
<tr>
<td>駐車場EAファン</td>
<td>定格風量</td>
<td>18,000m³/h</td>
</tr>
<tr>
<td></td>
<td>定格消費電力</td>
<td>15kW</td>
</tr>
<tr>
<td></td>
<td>換気制御方式</td>
<td>0 タイムスケジュール</td>
</tr>
<tr>
<td></td>
<td>制御効率係数</td>
<td>1</td>
</tr>
<tr>
<td>項目</td>
<td>名称</td>
<td>入力画面</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>tmBE</td>
<td>tmV 便所 テンプレート 換気</td>
<td></td>
</tr>
<tr>
<td>tmV 便所 扇</td>
<td>定格風量</td>
<td>1000m³/h</td>
</tr>
<tr>
<td>tmV 便所 扇</td>
<td>定格消費電力</td>
<td>0.45kW</td>
</tr>
<tr>
<td>tmV 換気装置制御</td>
<td>電力拡大率</td>
<td>14</td>
</tr>
<tr>
<td>tmV 換気動力盤2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4 建築・空調連成計算の結果

図 3.4-1～図 3.4-3 に建築・空調の連成計算結果の一例を示します。
4. 衛生・建築の構成計算

（1）衛生設備スペック入力

衛生設備のモデル化も空調設備同様テンプレートを活用していきます。ただしテンプレートが高置水槽方式であるのに対し、図4-1のようなAビルの衛生設備は加圧給水方式を採用しています。表4-1のようにテンプレート内の高置水槽モジュールを削除し、図4-2のようなモジュール構成とし、スペック入力、シーケンス接続を行っていきます。表4-2にデータ作成のための設定条件を示します。

図4-1 衛生設備システム

表4-1 衛生設備基幹テンプレート構成

削除モジュール
- tmPLE上水系統
- tmPLE雑用水系統

入力画面
図4-2 加圧給水方式のモジュール構成

表4-2 衛生設備データ作成のための設定条件

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容（下線部はテンプレートより変更箇所）</th>
</tr>
</thead>
<tbody>
<tr>
<td>男子人数</td>
<td></td>
<td>800人</td>
</tr>
<tr>
<td>女子人数</td>
<td></td>
<td>400人</td>
</tr>
<tr>
<td>男子大便器個数（個）</td>
<td></td>
<td>42個</td>
</tr>
<tr>
<td>女子大便器個数（個）</td>
<td></td>
<td>42個</td>
</tr>
<tr>
<td>男子洗面器（L/回）</td>
<td></td>
<td>8L/回</td>
</tr>
<tr>
<td>女子洗面器（L/回）</td>
<td></td>
<td>1.5L/回</td>
</tr>
<tr>
<td>大便器温水洗浄便座使用電力（Ws/回）</td>
<td></td>
<td>0.01[kWh/回]</td>
</tr>
<tr>
<td>大便器温水洗浄便座待機電力（Ws/回）</td>
<td></td>
<td>0.01[kWh/回]</td>
</tr>
<tr>
<td>ハンドドライヤー使用電力（Ws/回）</td>
<td></td>
<td>0.05[kWh/回]</td>
</tr>
<tr>
<td>上水受水槽 貯水量</td>
<td></td>
<td>16[m^3]</td>
</tr>
<tr>
<td>上水補給水 上水補給水量</td>
<td></td>
<td>60[L/min]</td>
</tr>
<tr>
<td>上水給水ポンプ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>雑用水受水槽 貯水量</td>
<td></td>
<td>40[m^3]</td>
</tr>
<tr>
<td>雑用水補給水 雑用水補給水量</td>
<td></td>
<td>200[L/min]</td>
</tr>
<tr>
<td>雑用水給水ポンプ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>雨水利用系 雨水（BEST Water）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>雨水貯留槽ユニット</td>
<td></td>
<td></td>
</tr>
<tr>
<td>汚水 汚水槽ユニット</td>
<td></td>
<td></td>
</tr>
<tr>
<td>汚水 汚水槽ユニット</td>
<td></td>
<td></td>
</tr>
<tr>
<td>空調ドレン排水槽ユニット</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

項目

<table>
<thead>
<tr>
<th>項目</th>
<th>衛生器具仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>上水給水ポンプ</td>
</tr>
<tr>
<td></td>
<td>下水給水ポンプ</td>
</tr>
<tr>
<td></td>
<td>雑用水給水ポンプ</td>
</tr>
<tr>
<td></td>
<td>雨水利用系統</td>
</tr>
<tr>
<td></td>
<td>汚水</td>
</tr>
<tr>
<td></td>
<td>空調ドレン</td>
</tr>
</tbody>
</table>

備考

- 上水給水ポンプ: 电源電圧 200V 50Hz
- 雑用水給水ポンプ: 电源電圧 200V 50Hz
- 雨水利用系統: 电源電圧 200V 50Hz
- 汚水: 电源電圧 200V 50Hz
- 空調ドレン: 电源電圧 200V 50Hz
（4）衛生設備シーケンス接続
各モジュールのスペック入力が終わったら、次にモジュール間の情報をやり取りを可能とするためにシーケンス接続を行います。「tmPLE 上水系統 給水ポンプユニット」モジュールを選択肢、右クリックでプロパティ（シーケンス接続）選択し、接続情報画面で「L0_watOutCW」、「L0_valInMRequest」をそれぞれ図4-3のような接続端子に接続します。一覧の各接続端子の番号と接続情報の番号が対応しており、接続端子名の欄が接続先の端子名を意味しています。「tmPLE 雑用水系統 給水ポンプユニット」についても同様に図4-4のように接続を行えば設定完了となります。

図4-3　衛生設備シーケンス接続先1
図 4-4 衛生設備シーケンス接続先 2
5. 電気・建築の連成計算

電気設備はテンプレート内で図5-1のように動力を3相200V、及び単相200V、照明・コンセントを単相200Vにて配電する構成となっており、BEST画面では図5-2のようなモジュール構成となります。ここでは、Aビルの最大電力を延べ床面積20,580m²×80W/m²=1660kW→1700kWに設定し、無負荷損、負荷損のスペックを設定し直します。図5-3、表5-1に無負荷損、負荷損の入力例、設定条件一覧を示します。

図5-1 電気システム

図5-2 電気設備のモジュール構成
図 5-3 無負荷損・負荷損入力例

表 5-1 電気設備データ作成のための設定条件

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>受変電遮断器</td>
<td>出口接続ノード数</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>有効無効電力拡大率</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>入口最大有効電力</td>
<td>1700kW</td>
</tr>
<tr>
<td>三相変圧器</td>
<td>容量</td>
<td>300 kVA</td>
</tr>
<tr>
<td></td>
<td>無負荷損</td>
<td>1460W</td>
</tr>
<tr>
<td></td>
<td>負荷損</td>
<td>11760W</td>
</tr>
<tr>
<td>単相変圧器</td>
<td>容量</td>
<td>300 kVA</td>
</tr>
<tr>
<td></td>
<td>無負荷損</td>
<td>1515W</td>
</tr>
<tr>
<td></td>
<td>負荷損</td>
<td>11010W</td>
</tr>
</tbody>
</table>
6. 建物全体の連成計算の結果

テンプレート内に定義されている、「エネルギー系媒体観測 用途別」及び「グラフ トレンド 1次エネルギー消費量 用途別」を活用し、空調熱源、空気搬送、照明、コンセント、換気、給排水、昇降機別に算出します。図6-1は年間に用途別一次エネルギー消費量の計算結果例を示します。また図6-2のように「エネルギー系媒体観測 用途別」モジュールの計算結果(best_result1M.csv)を表計算ソフトによって描画することで、建物全体のエネルギー性能を確認することが可能です。

図 6-1 建物全体エネルギー計算結果例 1

図 6-2 建物全体エネルギー計算結果例 2